Folding and Linear Positioning Arms with Autoadvance Kit Manual

IDENTIFICATION DATA OF THE MANUFACTURER KOLVER S.r.I. VIA M. CORNER, 19/21 36016 THIENE (VI) ITALIA

IDENTIFICATION DATA OF THE PRODUCT

MODEL:	LINAR2	TLS1/LINAR2
CODE:	010682/A	010682/TLS1/A

Only Autoadvance kit to be installed on Kolver code 020099

TECHNICAL DATA OF THE PRODUCT

ELECTROVALVE TENSION: 24V DC 0,35W ARM DIMENSIONS: 684 x 191.13 x 722,5h mm ARM WEIGHT: 5,7 Kg AUTOADVANCE KIT WEIGHT 0,4 Kg

		Torque	Strok	ke mm	Piston stroke	Min distance	
Code	Model	Max	Min	Max	mm	the max arm extension	
010682/A	LINAR2 with Autoadvance kit	50 Nm	184	665	0-50		
010682/TLS1/A	TLS1/LINAR2 with Autoadvance kit	50 Nm	184	665	0-50	6 mm	

Autoadvance Kit

The Autoadvance arm kit is a particular device that mounted on a Kolver Linar2 or Linart arm helps the operator in the assembly of self-tapping screws or in case of strong axial thrust.

Through a pneumatic piston, the part of the arm that supports the screwdriver is pushed down to help the axial thrust on the screw. The pneumatic piston is piloted by a electrovalve which, when properly powered, will push the piston (see the section dedicated to electrical connections).

AUTOADVANCE KIT EXPLODED VIEW

SPARE PARTS

Position	DESCRIPTION	Code	Qty
1	RACCORDO SILENZIATORE	895094	2
2	ELETTROVALVOLA	895092	1
3	SUPPORTO ELETTROVALVOLA	895096	1
4	VITE M3x10	231530	2
5	RACCORDO ARIA 90° M5 TUBO 4MM	250073	3
6	ANELLO DI TEFLON AUTOAVANZANTE	895084	1
7	BOCCOLA DI GUIDA AUTOAVAZANTE	895080	1
8	MOLLA INTERNA AUTOAVANZANTE	895088	1
9	PERMAGLIDE AUTOAVANZANTE	895091	2
10	TUBO 4MM	250075	1
11	CILINDRO 12MM CORSA 50MM DOPPIO	895090	1
	EFFEIIO	005000	
12	ANELLO FISSAGGIO PISTONE	895083	
13	M5X14 BRUNITA	895021	2
14	SUPPORTO PISTONE	895087	1
15	CUFFIA TEFLON	895085	1
16	VITE M3X5	801003	4
17	ANELLO DI APPOGGIO	895086	1
18	M3 X 8	240005/ZN	4
19	GUIDA SFERE AUTOAVANZANTE	895082	1
20	REGOLATORE UNIDIREZIONALE	895093	2
21	SFERA DIAM. 3mm	200003	6
22	BOCCOLA DI BLOCCAGGIO	895081	1
23	VALVOLA CHIUSURA ARIA	895095	1
24	VITE M8 X 16	895019	1
25	CAVO ELETTROVALVOLA 2M	895092/2M	1

<u>Electrovalve Specifications</u>

Component Parts

No.	Description	Material
1	Body	Aluminum die-casted (SY3000: Zinc die-casted)
2	Adapter plate	Resin
3	End plate	Resin
4	Piston	Resin
5	Spool valve assembly	Aluminum, H-NBR

ſ				Por	t size		Flow	char	acter	ristics	5	M	ass (g)
	Valve Type of		ype of		1→4/2 (P→A/B) 4/2-			$4/2 \rightarrow 5/3$ (A/B \rightarrow EA/EB)			Cro	L/M	W	
	model	actu	ation	1, 5, 5	4, Z	C (kdm ³ /	h	CV	C (kdm ³ /	h	CV	GIO-	plug	M8
					(s·bar))		CV	(s·bar))	D	CV	mmet	connector	connector	
	SY3□20	2	Single	MENOO	MENOO	0.01	0.44	0.40	0.04	0 45	0.40	51	53	57
	-□-M5	position	Double	M5 X U.8	M5 X U.8	0.8 0.61	0.44	0.16	0.64	0.45	0.18	68	74	82

Fluid	Air
Operating pressure	0,15-0,7 MPa
Ambient and fluid temperature	-10 - 50 °C
Max operation frequency	10 Hz
Pilot exhaust method	Common exhaust type
Lubrification	Not required
Impact/vibration (m/s ²)	150/30
Enclosure	Dust proof
Terminal	IP65
Coil rated voltage	24 V ±10%
Power consumption	0,35 W
Response time	Max 13 ms

Electrical connection

Connect the supplied cable (code 895092/2M) to the electrovalve through the appropriate connector.

Cable between the control unit and the electrovalve

Cable 2 mt to connect the per connessione elettrovalvola cod. 895092/2M.

The 2 mt cable for connection to the electrovalve (code 895092/2M), it is supplied with a moulded electrovalve connector on one side and 2 wired pin on the opposite side. The red cable must be connected to the 24V "lever / W" or "Motor ON" signal present in the Output connectors of the Kolver units; while the black one will be connected to the common 0VDC.

NB: some unit models have specific output signals for use with a selfadvancing arm called "Lever / W".

I/O Kolver unit connection to advance arm

Model	Code	Electrovalve cable	Electrovalve cable
		+24V Red wire	0V Black wire
EDU 1FR/SG/W	010010/FR/SG/W	Pin 6	Pin 1
EDU 1BL/SG/W	003000/SG/W	Pin 7	Pin 9
EDU 2AE Series		Pin 4 CN1	Pin 2 CN1
KDU Series		Pin 42 CN3	Pin 44 CN3

Cylinder

- Conformi alla norma ISO 6432 Compliant to norm ISO 6432
- Grande affidabilità e lunga durata High reliability and long life time
- · Versione a doppio effetto, magnetica o non magnetica Magnetic or non-magnetic double acting version
- Versione a semplice effetto non magnetica Non-magnetic single acting version
- Esecuzioni speciali a richiesta Special versions on request

Testate: alluminio anodizzato Guarnizioni: NBR o VITON

temperature oltre +60°C)

Sealings: NBR or VITON

temperatures over +60 °C)

Magnete: plastoferrite (non adatto per

End-cups: aluminium (anodize treatment)

Magnet: magnetic iron compound (not suitable for

Materiali Camicia: INOX Stelo: INOX

Materials Barrel: stainless steel Piston-rod: stainless steel

Forze di ritorno della molla per cilindri a semplice effetto Return spring forces for single acting cylinders

al a carda	forza di ritono della molla	
aresa ggio bore	return spring force	stato della molla
	corsa 50 (stroke)	spring status

12	3.5 N	a riposo <i>(at rest)</i>
	6 N	compressa (compressed)

Pressione di esercizio	max 10 bar
Working pressure	max 1 MPa
Temperatura di esercizio Temperature range	max +60°C
Paracolpi meccanici	Standard su tutta la gamma
Mechanical cushoning	Standard on the whole range
Ammortizzo pneumatico	Disponibile per alesaggio 20 e 25
Pneumetic cushaning	Available for bore 20 and 25
Fluido	Aria filtrata 50µ con o senza lubrificazione
Fluid	50µ filtered, lubricated or non lubricated air

Force

1 decaNewton [daN] = 10 N

1 decaNewton [daN] = 1,02 Kgf

etro stelo	moto	area utile	forza in	spinta e tra	izione in da	N in funzion	e della pres	sione di es	ercizio in ba	ır, a 20°C,	con rendim	ento 0.9	
[mm]	[mm]		[cm ²]	1 bar	2 bar	3 bar	4 bar	5 bar	6 bar	7 bar	8 bar	9 bar	10 bar
6	spinta trazione	1.13	1.017	2.035	3.053	4.071	5.089 3.816	6.107 4.580	7.124	8.142	9.160 6.870	10.178	
n	nm] 6	6 spinta trazione	moto moto area dule nm] [cm²] 6 spinta trazione 1.00	moto area une forza m nm] [cm²] 1 bar 6 spinta 1.13 1.017 rtrazione 1.00 0.763 1.00	moto [cm²] 1 bar 2 bar 6 spinta 1.13 1.017 2.035 trazione 1.00 0.763 1.526	moto [cm²] 1 bar 2 bar 3 bar 6 spinta 1.13 1.017 2.035 3.053 1 1.00 0.763 1.526 2.290	moto [cm²] 1 bar 2 bar 3 bar 4 bar 6 spinta 1.13 1.017 2.035 3.053 4.071 6 trazione 1.00 0.763 1.526 2.290 3.053	moto area utue forza in spinta e trazione in dal in duzione dena presi nm] 1 bar 2 bar 3 bar 4 bar 5 bar 6 spinta trazione 1.13 1.017 2.035 3.053 4.071 5.089 1.00 0.763 1.526 2.290 3.053 3.816	moto area une forza in spinte e dazone in dato in funzione della pressione di esi nm] [cm²] 1 bar 2 bar 3 bar 4 bar 5 bar 6 bar 6 spinta trazione 1.13 1.017 2.035 3.053 4.071 5.089 6.107 0.763 1.526 2.290 3.053 3.816 4.580	Interference Spinta 1.13 1.017 2.035 3.053 4.071 5.089 6.107 7.124 6 spinta 1.00 0.763 1.526 2.290 3.053 3.816 4.580 5.343	moto Invalue Invalue <thinvalue< th=""> <thinvalue< th=""> <thinva< td=""><td>moto invite invit invit invit</td></thinva<></thinvalue<></thinvalue<>	moto invite invit invit invit	

Mounting

Insert the pneumatic cylinder into the hole of the fixing ring.

Secure the cylinder with the 22mm nut, keep the pneumatic fittings aligned laterally as shown in the figure.

Connect the cylinder to the push bracket.

Fix the stem to the bracket up to the stop using the 5mm wrench. Secure the lock nut with a 10mm wrench.

Place the bushing on the vertical bearing support.

Join the assembled kit to the arm holder plate.

Align in the cylinder holder the fixing holes to the holes in the arm holder plate. Then fasten the screws.

Insert the kit mounted on the sliding rod.

NB. In order to move manually the self-advancing block in the rod it is necessary to keep it pressed on the vertical bearing support in order to simulate the closing of the piston. If no pressure is exerted, the selfadvancing block does not allow the arm to slide upwards. When the arm is in the rest position, the piston must remain closed so that the two parts are kept in support.

Hook the balancer cable to the lifting screw.

Protective hood assembly

The protection cap allows it to be mounted / dismounted on the selfadvancing block at the end of the entire assembly.

Pneumatic connections

Electrovalve mounting to the support

Electrovalve mounting to the balancer

Connection on the electrovalve

Connection on the piston

GUARANTEE

- 1. This KOLVER product is guaranteed against defective workmanship or materials, for a maximum period of 12 months following the date of purchase from KOLVER, provided that its usage is limited to single shift operation throughout that period. If the usage rate exceeds of single shift operation, the guarantee period shall be reduced on a prorata basis.
- 2. If, during the guarantee period, the product appears to be defective in workmanship or materials, it should be returned to KOLVER or its distributors, transport prepaied, together with a short description of the alleged defect. KOLVER shall, at its sole discretion, arrange to repair or replace free of charge such items.
- 3. This guarantee does not cover repair or replacement required as a consequence of products which have been abused, misused or modified, or which have been repaired using not original KOLVER spare parts or by not authorized service personnel.
- 4. KOLVER accepts no claim for labour or other expenditure made upon defective products.
- 5. Any direct, incidental or consequential damages whatsoever arising from any defect are expressly excluded.
- 6. This guarantee replaces all other guarantees, or conditions, expressed or implied, regarding the quality, the marketability or the fitness for any particular purpose.
- 7. No one, whether an agent, servant or employee of KOLVER, is authorized to add to or modify the terms of this limited guarantee in any way. However it's possible to extend the warranty with an extra cost. Further information at kolver@kolver.it.